
fastparquet Documentation
Release 0.7.1

Continuum Analytics

Apr 27, 2023

CONTENTS

1 Introduction 3

2 Highlights 5

3 Caveats, Known Issues 7

4 Relation to Other Projects 9

5 Index 11
5.1 Installation . 11
5.2 Release Notes . 12
5.3 Quickstart . 16
5.4 Usage Notes . 17
5.5 API . 21
5.6 Backend File-systems . 28

Index 31

i

ii

fastparquet Documentation, Release 0.7.1

A Python interface to the Parquet file format.

CONTENTS 1

fastparquet Documentation, Release 0.7.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The Parquet format is a common binary data store, used particularly in the Hadoop/big-data sphere. It provides several
advantages relevant to big-data processing, including:

1. columnar storage, only read the data of interest

2. efficient binary packing

3. choice of compression algorithms and encoding

4. split data into files, allowing for parallel processing

5. range of logical types

6. statistics stored in metadata allow for skipping unneeded chunks

7. data partitioning using the directory structure

Since it was developed as part of the Hadoop ecosystem, Parquet’s reference implementation is written in Java. This
package aims to provide a performant library to read and write Parquet files from Python, without any need for a Python-
Java bridge. This will make the Parquet format an ideal storage mechanism for Python-based big data workflows.

The tabular nature of Parquet is a good fit for the Pandas data-frame objects, and we exclusively deal with data-frame<-
>Parquet.

3

https://github.com/apache/parquet-format

fastparquet Documentation, Release 0.7.1

4 Chapter 1. Introduction

CHAPTER

TWO

HIGHLIGHTS

The original outline plan for this project can be found upstream

Briefly, some features of interest:

1. read and write Parquet files, in single or multiple-file format

2. choice of compression per-column and various optimized encoding schemes; ability to choose row divisions and
partitioning on write.

3. acceleration of both reading and writing using cython, competitive performance versus other frameworks

4. ability to read and write to arbitrary file-like objects, allowing interoperability with fsspec filesystems and
others

5. can be called from dask, to enable parallel reading and writing with Parquet files, possibly distributed across a
cluster.

5

https://github.com/dask/fastparquet/issues/1
http://dask.pydata.org

fastparquet Documentation, Release 0.7.1

6 Chapter 2. Highlights

CHAPTER

THREE

CAVEATS, KNOWN ISSUES

Please see the Release Notes. With versions 0.6.0 and 0.7.0, a LOT of new features and enhancements were added, so
please read that page carefully, this may affect you!

Fastparquet is a free and open-source project. We welcome contributions in the form of bug reports, documentation,
code, design proposals, and more. This page provides resources on how best to contribute.

Bug reports
Please file an issue on github.

7

https://github.com/dask/fastparquet/

fastparquet Documentation, Release 0.7.1

8 Chapter 3. Caveats, Known Issues

CHAPTER

FOUR

RELATION TO OTHER PROJECTS

1. parquet-python is the original pure-Python Parquet quick-look utility which was the inspiration for fastparquet.
It has continued development, but is not directed as big data vectorised loading as we are.

2. Apache Arrow and its python API define an in-memory data representation, and can read/write parquet, including
conversion to pandas. It is the “other” engine available within Dask and Pandas, and gives good performance
and a range of options. If you are using Arrow anyway, you probably want to use its parquet interface.

3. PySpark, a Python API to the Spark engine, interfaces Python commands with a Java/Scala execution core, and
thereby gives Python programmers access to the Parquet format. Spark is used in some tests and some test files
were produced by Spark.

4. fastparquet lives within the dask ecosystem, and although it is useful by itself, it is designed to work well with
dask for parallel execution, as well as related libraries such as s3fs for pythonic access to Amazon S3.

9

https://github.com/jcrobak/parquet-python
http://pyarrow.readthedocs.io/en/latest/
http://Spark.apache.org/docs/2.1.0/programming-guide.html
http://dask.pydata.org

fastparquet Documentation, Release 0.7.1

10 Chapter 4. Relation to Other Projects

CHAPTER

FIVE

INDEX

5.1 Installation

5.1.1 Requirements

Required:

1. numpy

2. pandas

3. cramjam

4. thrift

cramjam provides compression codecs: gzip, snappy, lz4, brotli, zstd

Optional compression codec:

1. python-lzo/lzo

5.1.2 Installation

Install using conda:

conda install -c conda-forge fastparquet

install from PyPI:

pip install fastparquet

or install latest version from github, “main” branch:

pip install git+https://github.com/dask/fastparquet

Please be sure to install numpy before fastparquet when using pip, as pip sometimes can fail to solve the environment.
Depending on your platform, pip may pull binary wheels or attempt to rebuild fastparquet.

11

https://github.com/milesgranger/pyrus-cramjam

fastparquet Documentation, Release 0.7.1

5.1.3 Dev requirements

To run all of the tests, you will need the following, in addition to the requirements above:

1. python=3.8

2. bson

3. lz4

4. lzo

5. pytest

6. dask

7. moto/s3fs

8. pytest-cov

9. pyspark

Some of these (e.g., pyspark) are optional and will result in skipped tests if not present.

Tests use pytest.

Building Docs
The docs/ directory contains source code for the documentation. You will need sphinx and numpydoc to successfully
build. sphinx allows output in many formats, including html:

in directory docs/
make html

This will produce a build/html/ subdirectory, where the entry point is index.html.

5.2 Release Notes

5.2.1 2023.2.0

1. revert one-level set of filters (#852)

2. full size dict for decoding V2 pages (#850)

3. infer_object_encoding fix (#847)

4. row filtering with V2 pages (#845)

5.2.2 2023.1.0

1. big improvement to write speed

2. paging support for bigger row-groups

3. pandas 2.0 support

4. delta for big-endian architecture

12 Chapter 5. Index

fastparquet Documentation, Release 0.7.1

5.2.3 2022.12.0

1. add py3.11 wheel builds

2. check all int32 values before passing to thrift writer

3. fix type of num_rows to i64 for big single file

5.2.4 2022.11.0

1. Switch to calver

2. Speed up loading of nullable types

3. Allow schema evolution by addition of columns

4. Allow specifying dtypes of output

5. update to scm versioning

6. update CI and use mamba

7. fixes to row filter, statistics and tests

8. support pathlib.Paths

9. JSON encoder options

5.2.5 0.8.3

1. improved key/value handling and rejection of bad types

2. fix regression in consolidate_cats (caught in dask tests)

5.2.6 0.8.2

1. datetime indexes initialised to 0 to prevent overflow from randommemory

2. case from csv_to_parquet where stats exists but has not nulls entry

3. define len and bool for ParquetFile

4. maintain int types of optional data tha came from pandas

5. fix for delta encoding

5.2.7 0.8.1

1. fix critical buffer overflow crash for large number of columns and long column names

2. metadata handling

3. thrift int32 for list

4. avoid error storing NaNs in column stats

5.2. Release Notes 13

fastparquet Documentation, Release 0.7.1

5.2.8 0.8.0

1. our own cythonic thrift implementation (drop thrift dependency)

2. more in-place dataset editing ad reordering

3. python 3.10 support

4. fixes for multi-index and pandas types

5.2.9 0.7.2

1. Ability to remove row-groups in-place for multifile datasets

2. Accept pandas nullable Float type

3. allow empty strings and fix min/max when there is no data

4. make writing statistics optional

5. row selection in to_pandas()

5.2.10 0.7.1

1. Back compile for older versions of numpy

2. Make pandas nullable types opt-out. The old behaviour (casting to float) is still available with ParquetFile(.
.., pandas_nulls=False).

3. Fix time field regression: IsAdjustedToUTC will be False when there is no timezone

4. Micro improvements to the speed of ParquetFile creation by using simple simple string ops instead of regex and
regularising filenames once at the start. Effects datasets with many files.

5.2.11 0.7.0

(July 2021)

This version institutes major, breaking changes, listed here, and incremental fixes and additions.

1. Reading a directory without a _metadata summary file now works by providing only the directory, instead of a
list of constituent files. This change also makes direct of use of fsspec filesystems, if given, to be able to load the
footer metadata areas of the files concurrently, if the storage backend supports it, and not directly instantiating
intermediate ParquetFile instances

2. row-level filtering of the data. Whereas previously, only full row-groups could be excluded on the basis of their
parquet metadata statistics (if present), filtering can now be done within row-groups too. The syntax is the same as
before, allowing for multiple column expressions to be combined with AND|OR, depending on the list structure.
This mechanism requires two passes: one to load the columns needed to create the boolean mask, and another
to load the columns actually needed in the output. This will not be faster, and may be slower, but in some cases
can save significant memory footprint, if a small fraction of rows are considered good and the columns for the
filter expression are not in the output. Not currently supported for reading with DataPageV2.

3. DELTA integer encoding (read-only): experimentally working, but we only have one test file to verify against,
since it is not trivial to persuade Spark to produce files encoded this way. DELTA can be extremely compact a
representation for slowly varying and/or monotonically increasing integers.

14 Chapter 5. Index

fastparquet Documentation, Release 0.7.1

4. nanosecond resolution times: the new extended “logical” types system supports nanoseconds alongside the pre-
vious millis and micros. We now emit these for the default pandas time type, and produce full parquet schema
including both “converted” and “logical” type information. Note that all output has isAdjustedToUTC=True,
i.e., these are timestamps rather than local time. The time-zone is stored in the metadata, as before, and will
be successfully recreated only in fastparquet and (py)arrow. Otherwise, the times will appear to be UTC. For
compatibility with Spark, you may still want to use times="int96" when writing.

5. DataPageV2 writing: now we support both reading and writing. For writing, can be enabled with the environment
variable FASTPARQUET_DATAPAGE_V2, or module global fastparquet.writer.DATAPAGE_VERSION
and is off by default. It will become on by default in the future. In many cases, V2 will result in better read
performance, because the data and page headers are encoded separately, so data can be directly read into the
output without addition allocation/copies. This feature is considered experimental, but we believe it working
well for most use cases (i.e., our test suite) and should be readable by all modern parquet frameworks including
arrow and spark.

6. pandas nullable types: pandas supports “masked” extension arrays for types that previously could not support
NULL at all: ints and bools. Fastparquet used to cast such columns to float, so that we could represent NULLs
as NaN; now we use the new(er) masked types by default. This means faster reading of such columns, as there
is no conversion. If the metadata guarantees that there are no nulls, we still use the non-nullable variant unless
the data was written with fastparquet/pyarrow, and the metadata indicates that the original datatype was nullable.
We already handled writing of nullable columns.

5.2.12 0.6.0

(May 2021)

This version institutes major, breaking changes, listed here, and incremental fixes and additions.

NB: minor versions up to 0.6.3 fix build issues

1. replacement of the numba dependency with cythonized code. This also brought many performance improve-
ments, by reducing memory copies in many places, and an overhaul of many parts of the code. Replacing numba
by cython did not affect the performance of specific functions, but has made installation of fastparquet much sim-
pler, for not needing the numba/LLVM stack, and imports faster, for not having to compile any code at runtime.

2. distribution as pip-installable wheels. Since we are cythonizing more, we want to make installation as simple as
we can. So we now produce wheels.

3. using cramjam as the comp/decompression backend, instead of separate libraries for snappy, zstd, brotli. . . .
This decreases the size and complexity of the install, guarantees the availability of codecs (cramjam is a required
dependency, but with no dependencies of its own), and for the parquet read case, where we know the size of the
original data, brings a handy speed-up.

4. implementation of DataPageV2: reading (see also 0.7.0 entry): this has been in the parquet spec for a long time,
but only seen sporadic take-up until recently. Using standard reference files from the parquet project, we ensure
correct reading of some V2-encoded files.

5. RLE_DICT: this one is more of a fix. The parquet spec renamed PLAIN_DICTIONARY, or perhaps renamed
the previous definition. We now follow the new definitions for writing and support both for reading.

6. support custom key/value metadata on write and preserve this metadata on append or consolidate of many data
files.

5.2. Release Notes 15

https://github.com/milesgranger/pyrus-cramjam

fastparquet Documentation, Release 0.7.1

5.3 Quickstart

You may already be using fastparquet via the Dask or Pandas APIs. The options available, with
engine="fastparquet", are essentially the same as given here and in our API docs.

5.3.1 Reading

To open and read the contents of a Parquet file:

from fastparquet import ParquetFile
pf = ParquetFile('myfile.parq')
df = pf.to_pandas()

The Pandas data-frame, df will contain all columns in the target file, and all row-groups concatenated together. If the
data is a multi-file collection, such as generated by hadoop, the filename to supply is either the directory name, or the
“_metadata” file contained therein #.these are handled transparently.

One may wish to investigate the meta-data associated with the data before loading, for example, to choose which row-
groups and columns to load. The properties columns, count, dtypes and statistics are available to assist with this,
and a summary in info. In addition, if the data is in a hierarchical directory-partitioned structure, then the property
cats specifies the possible values of each partitioning field. You can get a deeper view of the parquet schema wih
print(pf.schema).

You may specify which columns to load, which of those to keep as categoricals (if the data uses dictionary encoding),
and which column to use as the pandas index. By selecting columns, we only access parts of the file, and efficiently
skip columns that are not of interest.

df2 = pf.to_pandas(['col1', 'col2'], categories=['col1'])
or
df2 = pf.to_pandas(['col1', 'col2'], categories={'col1': 12})

where the second version specifies the number of expected labels for that column. If the data originated from pandas,
the categories will already be known.

Furthermore, row-groups can be skipped by providing a list of filters. There is no need to return the filtering column
as a column in the data-frame. Note that only row-groups that have no data at all meeting the specified requirements
will be skipped.

df3 = pf.to_pandas(['col1', 'col2'], filters=[('col3', 'in', [1, 2, 3, 4])])

(new in 0.7.0: row-level filtering)

5.3.2 Writing

To create a single Parquet file from a dataframe:

from fastparquet import write
write('outfile.parq', df)

The function write provides a number of options. The default is to produce a single output file with a row-groups up
to 50M rows, with plain encoding and no compression. The performance will therefore be similar to simple binary
packing such as numpy.save for numerical columns.

Further options that may be of interest are:

16 Chapter 5. Index

fastparquet Documentation, Release 0.7.1

1. the compression algorithms (typically “snappy”, for fast, but not too space-efficient), which can vary by column

2. the row-group splits to apply, which may lead to efficiencies on loading, if some row-groups can be skipped.
Statistics (min/max) are calculated for each column in each row-group on the fly.

3. multi-file saving can be enabled with the file_scheme="hive"|"drill": directory-tree-partitioned output
with a single metadata file and several data-files, one or more per leaf directory. The values used for partitioning
are encoded into the paths of the data files.

4. append to existing data sets with append=True, adding new row-groups. For the specific case of “hive”-
partitioned data and one file per partition, append="overwrite" is also allowed, which replaces partitions
of the data where new data are given, but leaves other existing partitions untouched.

write('outdir.parq', df, row_group_offsets=[0, 10000, 20000],
compression='GZIP', file_scheme='hive')

5.4 Usage Notes

Some additional information to bear in mind when using fastparquet, in no particular order. Much of what follows has
implications for writing parquet files that are compatible with other parquet implementations, versus performance when
writing data for reading back with fastparquet. Please also read the Release Notes for newer or experimental features.

Whilst we aim to make the package simple to use, some choices on the part of the user may effect performance and
data consistency.

5.4.1 Categoricals

When writing a data-frame with a column of pandas type Category, the data will be encoded using Parquet “dictionary
encoding”. This stores all the possible values of the column (typically strings) separately, and the index corresponding
to each value as a data set of integers. If there is a significant performance gain to be made, such as long labels, but
low cardinality, users are suggested to turn their object columns into the category type:

df[col] = df[col].astype('category')

Fastparquet will automatically use metadata information to load such columns as categorical if the data was written by
fastparquet/pyarrow.

To efficiently load a column as a categorical type for data from other parquet frameworks, include it in the optional
keyword parameter categories; however it must be encoded as dictionary throughout the dataset, with the same labels
in every part.

pf = ParquetFile('input.parq')
df = pf.to_pandas(categories={'cat': 12})

Where we provide a hint that the column cat has up to 12 possible values. categories can also take a list, in which
case up to 32767 (2**15 - 1) labels are assumed. For data not written by fastparquet/pyarrow, columns that are encoded
as dictionary but not included in categories will be de-referenced on load, which is potentially expensive.

5.4. Usage Notes 17

fastparquet Documentation, Release 0.7.1

5.4.2 Byte Arrays

Fixed-length byte arrays provide a modest speed boost for binary data (bytestrings) whose lengths really are all the
same or nearly so. To automatically convert string values to fixed-length when writing, use the fixed_text optional
keyword, with a predetermined length.

write('out.parq', df, fixed_text={'char_code': 1})

This is not recommended for strings, since UTF8 encoding/decoding must be done anyway, and converting to fixed
will probably just waste time.

5.4.3 Nulls

In pandas, there is no internal representation difference between NULL (no value) and NaN/NaT (not a valid number)
for float and time columns. Other parquet frameworks (e.g., in in Spark) might likely treat NULL and NaN differently.
In the typical case of tabular data (as opposed to strict numerics), users often mean the NULL semantics, and so should
write NULLs information. Furthermore, it is typical for some parquet frameworks to define all columns as optional,
whether or not they are intended to hold any missing data, to allow for possible mutation of the schema when appending
partitions later.

Since there is some cost associated with reading and writing NULLs information, fastparquet provides the has_nulls
keyword when writing to specify how to handle NULLs. In the case that a column has no NULLs, including NULLs
information will not produce a great performance hit on reading, and only a slight extra time upon writing, while
determining that there are zero NULL values.

The following cases are allowed for has_nulls:

1. True: all columns become optional, and NaNs are always stored as NULL. This is the best option for compati-
bility. This is the default.

2. False: all columns become required, and any NaNs are stored as NaN; if there are any fields which cannot store
such sentinel values (e.g,. string), but do contain None, there will be an error.

3. ‘infer’: only object columns will become optional, since float, time, and category columns can store sentinel
values, and ordinary pandas int columns cannot contain any NaNs. This is the best-performing option if the data
will only be read by fastparquet. Pandas nullable columns will be stored as optional, whether or not they contain
nulls.

4. list of strings: the named columns will be optional, others required (no NULLs)

5.4.4 Data Types

There is fairly good correspondence between pandas data-types and Parquet simple and logical data types. The types
documentation gives details of the implementation spec.

A couple of caveats should be noted:

1. fastparquet will not write any Decimal columns, only float, and when reading such columns, the output will also
be float, with potential machine-precision errors;

2. only UTF8 encoding for text is automatically handled, although arbitrary byte strings can be written as raw bytes
type;

3. all times are stored as UTC, but the timezone is stored in the metadata, so will be recreated if loaded into pandas

18 Chapter 5. Index

https://spark.apache.org/docs/2.1.0/sql-programming-guide.html#nan-semantics
https://github.com/apache/parquet-format/blob/master/LogicalTypes.md
https://github.com/apache/parquet-format/blob/master/LogicalTypes.md

fastparquet Documentation, Release 0.7.1

5.4.5 Reading Nested Schema

Fastparquet can read nested schemas. The principal mechamism is flattening, whereby parquet schema struct columns
become top-level columns. For instance, if a schema looks like

root
| - visitor: OPTIONAL
| - ip: BYTE_ARRAY, UTF8, OPTIONAL
- network_id: BYTE_ARRAY, UTF8, OPTIONAL

then the ParquetFilewill include entries “visitor.ip” and “visitor.network_id” in its columns, and these will become
ordinary Pandas columns. We do not generate a hierarchical column index.

Fastparquet also handles some parquet LIST and MAP types. For instance, the schema may include

| - tags: LIST, OPTIONAL
- list: REPEATED
- element: BYTE_ARRAY, UTF8, OPTIONAL

In this case, columns would include an entry “tags”, which evaluates to an object column containing lists of strings.
Reading such columns will be relatively slow. If the ‘element’ type is anything other than a primitive type, i.e., a struct,
map or list, than fastparquet will not be able to read it, and the resulting column will either not be contained in the
output, or contain only None values.

5.4.6 Object encoding

Object columns are Json encoded and decoded if the data type is json, as specified by the object_encoding parameter
in fastparquet.write.

If any of the libraries orjson, ujson, python-rapidjson is installed, then it’s used in place of the json module in
the Python Standard Library.

Using one of these libraries may improve both the reading and writing performance.

You can also enforce the use of a specific library by setting the environment variable FASTPARQUET_JSON_CODEC to
one of the supported modules:

• orjson

• ujson

• rapidjson

• json

5.4.7 Partitions and row-groups

The Parquet format allows for partitioning the data by the values of some (low-cardinality) columns and by row sequence
number. Both of these can be in operation at the same time, and, in situations where only certain sections of the data
need to be loaded, can produce great performance benefits in combination with load filters.

Splitting on both row-groups and partitions can potentially result in many data-files and large metadata. It should be
used sparingly, when partial selecting of the data is anticipated.

Row groups
The keyword parameter row_group_offsets allows control of the row sequence-wise splits in the data. For example,
with the default value, each row group will contain 50 million rows. The exact index of the start of each row-group can

5.4. Usage Notes 19

fastparquet Documentation, Release 0.7.1

also be specified, which may be appropriate in the presence of a monotonic index: such as a time index might lead to
the desire to have all the row-group boundaries coincide with year boundaries in the data.

Partitions
In the presence of some low-cardinality columns, it may be advantageous to split data data on the values of those
columns. This is done by writing a directory structure with key=value names. Multiple partition columns can be
chosen, leading to a multi-level directory tree.

Consider the following directory tree from this Spark example:

table/
gender=male/

country=US/
data.parquet

country=CN/
data.parquet

gender=female/
country=US/

data.parquet

country=CN/
data.parquet

Here the two partitioned fields are gender and country, each of which have two possible values, resulting in four
datafiles. The corresponding columns are not stored in the data-files, but inferred on load, so space is saved, and if
selecting based on these values, potentially some of the data need not be loaded at all.

If there were two row groups and the same partitions as above, each leaf directory would contain (up to) two files, for a
total of eight. If a row-group happens to contain no data for one of the field value combinations, that data file is omitted.

5.4.8 Iteration

For data-sets too big to fit conveniently into memory, it is possible to iterate through the row-groups in a similar way
to reading by chunks from CSV with pandas.

pf = ParquetFile('myfile.parq')
for df in pf.iter_row_groups():

print(df.shape)
process sub-data-frame df

Thus only one row-group is in memory at a time. The same set of options are available as in to_pandas allowing, for
instance, reading only specific columns, loading to categoricals or to ignore some row-groups using filtering.

To get the first row-group only, one would go:

first = next(iter(pf.iter_row_groups()))

You can also grab the first N rows of the first row-group with fastparquet.ParquetFile.head(), or select from
among a data-set’s row-groups using slice notation pf_subset = pf[2:8].

20 Chapter 5. Index

http://Spark.apache.org/docs/latest/sql-programming-guide.html#partition-discovery

fastparquet Documentation, Release 0.7.1

5.4.9 Dask/Pandas

Dask and Pandas fully support calling fastparquet directly, with the function read_parquet and method
to_parquet, specifying engine="fastparquet". Please see their relevant docstrings. Remote filesystems are sup-
ported by using a URL with a “protocol://” specifier and any storage_options to be passed to the file system imple-
mentation.

5.5 API

ParquetFile(fn[, verify, open_with, root, ...]) The metadata of a parquet file or collection
ParquetFile.to_pandas([columns, categories, ...]) Read data from parquet into a Pandas dataframe.
ParquetFile.iter_row_groups([filters]) Iterate a dataset by row-groups
ParquetFile.info Dataset summary
ParquetFile.head(nrows, **kwargs) Get the first nrows of data
ParquetFile.count([filters, row_filter]) Total number of rows
ParquetFile.__getitem__(item) Select among the row-groups using integer/slicing
write(filename, data[, row_group_offsets, ...]) Write pandas dataframe to filename with parquet format.

class fastparquet.ParquetFile(fn, verify=False, open_with=<built-in function open>, root=False,
sep=None, fs=None, pandas_nulls=True, dtypes=None)

The metadata of a parquet file or collection

Reads the metadata (row-groups and schema definition) and provides methods to extract the data from the files.

Note that when reading parquet files partitioned using directories (i.e. using the hive/drill scheme), an attempt
is made to coerce the partition values to a number, datetime or timedelta. Fastparquet cannot read a hive/drill
parquet file with partition names which coerce to the same value, such as “0.7” and “.7”.

Parameters
fn: path/URL string or list of paths

Location of the data. If a directory, will attempt to read a file “_metadata” within that direc-
tory. If a list of paths, will assume that they make up a single parquet data set. This parameter
can also be any file-like object, in which case this must be a single-file dataset.

verify: bool [False]
test file start/end byte markers

open_with: function
With the signature func(path, mode), returns a context which evaluated to a file open for
reading. Defaults to the built-in open.

root: str
If passing a list of files, the top directory of the data-set may be ambiguous for partitioning
where the upmost field has only one value. Use this to specify the dataset root directory, if
required.

fs: fsspec-compatible filesystem
You can use this instead of open_with (otherwise, it will be inferred)

pandas_nulls: bool (True)
If True, columns that are int or bool in parquet, but have nulls, will become pandas nullale
types (Uint, Int, boolean). If False (the only behaviour prior to v0.7.0), both kinds will be
cast to float, and nulls will be NaN. Pandas nullable types were introduces in v1.0.0, but were
still marked as experimental in v1.3.0.

5.5. API 21

fastparquet Documentation, Release 0.7.1

Attributes
fn: path/URL

Of ‘_metadata’ file.

basepath: path/URL
Of directory containing files of parquet dataset.

cats: dict
Columns derived from hive/drill directory information, with known values for each column.

categories: list
Columns marked as categorical in the extra metadata (meaning the data must have come
from pandas).

columns: list of str
The data columns available

count: int
Total number of rows

dtypes: dict
Expected output types for each column

file_scheme: str
‘simple’: all row groups are within the same file; ‘hive’: all row groups are in other files;
‘mixed’: row groups in this file and others too; ‘empty’: no row groups at all.

info: dict
Combination of some of the other attributes

key_value_metadata: dict
Additional information about this data’s origin, e.g., pandas description, and custom meta-
data defined by user.

row_groups: list
Thrift objects for each row group

schema: schema.SchemaHelper
print this for a representation of the column structure

selfmade: bool
If this file was created by fastparquet

statistics: dict
Max/min/count of each column chunk

fs: fsspec-compatible filesystem
You can use this instead of open_with (otherwise, it will be inferred)

Methods

count([filters, row_filter]) Total number of rows
head(nrows, **kwargs) Get the first nrows of data
iter_row_groups([filters]) Iterate a dataset by row-groups
read_row_group_file(rg, columns, categories) Open file for reading, and process it as a row-group
remove_row_groups(rgs[, sort_pnames, ...]) Remove list of row groups from disk.
to_pandas([columns, categories, filters, ...]) Read data from parquet into a Pandas dataframe.
write_row_groups(data[, row_group_offsets, ...]) Write data as new row groups to disk, with optional

sorting.

22 Chapter 5. Index

fastparquet Documentation, Release 0.7.1

check_categories
pre_allocate
row_group_filename

property columns

Column names

count(filters=None, row_filter=False)
Total number of rows

filters and row_filters have the same meaning as in to_pandas. Unless both are given, this method will not
need to decode any data

head(nrows, **kwargs)
Get the first nrows of data

This will load the whole of the first valid row-group for the given columns.

kwargs can include things like columns, filters, etc., with the same semantics as to_pandas(). If filters are
applied, it may happen that data is so reduced that ‘nrows’ is not ensured (fewer rows).

returns: dataframe

property info

Dataset summary

iter_row_groups(filters=None, **kwargs)
Iterate a dataset by row-groups

If filters is given, omits row-groups that fail the filer (saving execution time)

Returns
Generator yielding one Pandas data-frame per row-group.

read_row_group_file(rg, columns, categories, index=None, assign=None, partition_meta=None,
row_filter=False, infile=None)

Open file for reading, and process it as a row-group

assign is None if this method is called directly (not from to_pandas), in which case we return the resultant
dataframe

row_filter can be:

• False (don’t do row filtering)

• a list of filters (do filtering here for this one row-group; only makes sense if assign=None

• bool array with a size equal to the number of rows in this group and the length of the assign arrays

remove_row_groups(rgs, sort_pnames: bool = False, write_fmd: bool = True, open_with=<built-in function
open>, remove_with=None)

Remove list of row groups from disk. ParquetFile metadata are updated accordingly. This method can not
be applied if file scheme is simple.

to_pandas(columns=None, categories=None, filters=[], index=None, row_filter=False, dtypes=None)
Read data from parquet into a Pandas dataframe.

Parameters

5.5. API 23

fastparquet Documentation, Release 0.7.1

columns: list of names or `None`
Column to load (see ParquetFile.columns). Any columns in the data not in this list will be
ignored. If None, read all columns.

categories: list, dict or `None`
If a column is encoded using dictionary encoding in every row-group and its name is also
in this list, it will generate a Pandas Category-type column, potentially saving memory and
time. If a dict {col: int}, the value indicates the number of categories, so that the optimal
data-dtype can be allocated. If None, will automatically set if the data was written from
pandas.

filters: list of list of tuples or list of tuples
To filter out data. Filter syntax: [[(column, op, val), . . .],. . .] where op is [==, =, >, >=, <,
<=, !=, in, not in] The innermost tuples are transposed into a set of filters applied through
an AND operation. The outer list combines these sets of filters through an OR operation.
A single list of tuples can also be used, meaning that no OR operation between set of filters
is to be conducted.

index: string or list of strings or False or None
Column(s) to assign to the (multi-)index. If None, index is inferred from the metadata (if
this was originally pandas data); if the metadata does not exist or index is False, index is
simple sequential integers.

row_filter: bool or boolean ndarray
Whether filters are applied to whole row-groups (False, default) or row-wise (True, exper-
imental). The latter requires two passes of any row group that may contain valid rows, but
can be much more memory-efficient, especially if the filter columns are not required in the
output. If boolean array, it is applied as custom row filter. In this case, ‘filter’ parameter is
ignored, and length of the array has to be equal to the total number of rows.

Returns
Pandas data-frame

write_row_groups(data, row_group_offsets=None, sort_key=None, sort_pnames: bool = False,
compression=None, write_fmd: bool = True, open_with=<built-in function open>,
mkdirs=None, stats='auto')

Write data as new row groups to disk, with optional sorting.

Parameters
data

[pandas dataframe or iterable of pandas dataframe] Data to add to existing parquet dataset.
Only columns are written to disk. Row index is not kept. If a dataframe, columns are
checked against parquet file schema.

row_group_offsets: int or list of int
If int, row-groups will be approximately this many rows, rounded down to make row groups
about the same size; If a list, the explicit index values to start new row groups; If None, set
to 50_000_000.

sort_key
[function, default None] Sorting function used as key parameter for row_groups.sort() func-
tion. This function is called once new row groups have been added to list of existing ones.
If not provided, new row groups are only appended to existing ones and the updated list of
row groups is not sorted.

sort_pnames
[bool, default False] Align name of part files with position of the 1st row group they contain.
Only used if file_scheme of parquet file is set to hive or drill.

24 Chapter 5. Index

fastparquet Documentation, Release 0.7.1

compression
[str or dict, default None] Compression to apply to each column, e.g. GZIP or SNAPPY or a
dict like {"col1": "SNAPPY", "col2": None} to specify per column compression
types. By default, do not compress. Please, review full description of this parameter in
write docstring.

write_fmd
[bool, default True] Write updated common metadata to disk.

open_with
[function] When called with a f(path, mode), returns an open file-like object.

mkdirs
[function] When called with a path/URL, creates any necessary dictionaries to make that
location writable, e.g., os.makedirs. This is not necessary if using the simple file scheme.

stats
[True|False|list of str] Whether to calculate and write summary statistics. If True (default),
do it for every column; If False, never do; If a list of str, do it only for those specified
columns. “auto” means True for any int/float or timemstamp column, False otherwise.
This will become the default in a future release.

ParquetFile.to_pandas(columns=None, categories=None, filters=[], index=None, row_filter=False,
dtypes=None)

Read data from parquet into a Pandas dataframe.

Parameters
columns: list of names or `None`

Column to load (see ParquetFile.columns). Any columns in the data not in this list will be
ignored. If None, read all columns.

categories: list, dict or `None`
If a column is encoded using dictionary encoding in every row-group and its name is also
in this list, it will generate a Pandas Category-type column, potentially saving memory and
time. If a dict {col: int}, the value indicates the number of categories, so that the optimal
data-dtype can be allocated. If None, will automatically set if the data was written from
pandas.

filters: list of list of tuples or list of tuples
To filter out data. Filter syntax: [[(column, op, val), . . .],. . .] where op is [==, =, >, >=, <,
<=, !=, in, not in] The innermost tuples are transposed into a set of filters applied through
an AND operation. The outer list combines these sets of filters through an OR operation. A
single list of tuples can also be used, meaning that no OR operation between set of filters is
to be conducted.

index: string or list of strings or False or None
Column(s) to assign to the (multi-)index. If None, index is inferred from the metadata (if this
was originally pandas data); if the metadata does not exist or index is False, index is simple
sequential integers.

row_filter: bool or boolean ndarray
Whether filters are applied to whole row-groups (False, default) or row-wise (True, experi-
mental). The latter requires two passes of any row group that may contain valid rows, but
can be much more memory-efficient, especially if the filter columns are not required in the
output. If boolean array, it is applied as custom row filter. In this case, ‘filter’ parameter is
ignored, and length of the array has to be equal to the total number of rows.

Returns

5.5. API 25

fastparquet Documentation, Release 0.7.1

Pandas data-frame
ParquetFile.iter_row_groups(filters=None, **kwargs)

Iterate a dataset by row-groups

If filters is given, omits row-groups that fail the filer (saving execution time)

Returns
Generator yielding one Pandas data-frame per row-group.

fastparquet.write(filename, data, row_group_offsets=None, compression=None, file_scheme='simple',
open_with=<built-in function open>, mkdirs=None, has_nulls=True, write_index=None,
partition_on=[], fixed_text=None, append=False, object_encoding='infer', times='int64',
custom_metadata=None, stats='auto')

Write pandas dataframe to filename with parquet format.

Parameters
filename: str or pathlib.Path

Parquet collection to write to, either a single file (if file_scheme is simple) or a directory
containing the metadata and data-files.

data: pandas dataframe
The table to write.

row_group_offsets: int or list of int
If int, row-groups will be approximately this many rows, rounded down to make row groups
about the same size; If a list, the explicit index values to start new row groups; If None,
set to 50_000_000. In case of partitioning the data, final row-groups size can be reduced
significantly further by the partitioning, occuring as a subsequent step.

compression: str, dict
compression to apply to each column, e.g. GZIP or SNAPPY or a dict like {"col1":
"SNAPPY", "col2": None} to specify per column compression types. In both cases,
the compressor settings would be the underlying compressor defaults. To pass arguments to
the underlying compressor, each dict entry should itself be a dictionary:

{
col1: {

"type": "LZ4",
"args": {

"mode": "high_compression",
"compression": 9

}
},
col2: {

"type": "SNAPPY",
"args": None

}
"_default": {

"type": "GZIP",
"args": None

}
}

where "type" specifies the compression type to use, and "args" specifies a dict that will
be turned into keyword arguments for the compressor. If the dictionary contains a “_default”
entry, this will be used for any columns not explicitly specified in the dictionary.

26 Chapter 5. Index

fastparquet Documentation, Release 0.7.1

file_scheme: ‘simple’|’hive’|’drill’
If simple: all goes in a single file If hive or drill: each row group is in a separate file, and a
separate file (called “_metadata”) contains the metadata.

open_with: function
When called with a f(path, mode), returns an open file-like object

mkdirs: function
When called with a path/URL, creates any necessary dictionaries to make that location
writable, e.g., os.makedirs. This is not necessary if using the simple file scheme

has_nulls: bool, ‘infer’ or list of strings
Whether columns can have nulls. If a list of strings, those given columns will be marked
as “optional” in the metadata, and include null definition blocks on disk. Some data types
(floats and times) can instead use the sentinel values NaN and NaT, which are not the same as
NULL in parquet, but functionally act the same in many cases, particularly if converting back
to pandas later. A value of ‘infer’ will assume nulls for object columns and not otherwise.
Ignored if appending to an existing parquet data-set.

write_index: boolean
Whether or not to write the index to a separate column. By default we write the index if it
is not 0, 1, . . . , n. Ignored if appending to an existing parquet data-set.

partition_on: string or list of string
Column names passed to groupby in order to split data within each row-group, producing
a structured directory tree. Note: as with pandas, null values will be dropped. Ignored if
file_scheme is simple. Checked when appending to an existing parquet dataset that requested
partition column names match those of existing parquet data-set.

fixed_text: {column: int length} or None
For bytes or str columns, values will be converted to fixed-length strings of the given length
for the given columns before writing, potentially providing a large speed boost. The length
applies to the binary representation after conversion for utf8, json or bson. Ignored if ap-
pending to an existing parquet dataset.

append: bool (False) or ‘overwrite’
If False, construct data-set from scratch; if True, add new row-group(s) to existing data-set.
In the latter case, the data-set must exist, and the schema must match the input data.

If ‘overwrite’, existing partitions will be replaced in-place, where the given data has any rows
within a given partition. To use this, the existing dataset had to be written with these other
parameters set to specific values, or will raise ValueError:

• file_scheme='hive'

• partition_on set to at least one column name.

object_encoding: str or {col: type}
For object columns, this gives the data type, so that the values can be encoded to bytes.
Possible values are bytes|utf8|json|bson|bool|int|int32|decimal, where bytes is assumed if not
specified (i.e., no conversion). The special value ‘infer’ will cause the type to be guessed
from the first ten non-null values. The decimal.Decimal type is a valid choice, but will result
in float encoding with possible loss of accuracy. Ignored if appending to an existing parquet
data-set.

times: ‘int64’ (default), or ‘int96’:
In “int64” mode, datetimes are written as 8-byte integers, us resolution; in “int96” mode,
they are written as 12-byte blocks, with the first 8 bytes as ns within the day, the next 4 bytes
the julian day. ‘int96’ mode is included only for compatibility. Ignored if appending to an
existing parquet data-set.

5.5. API 27

fastparquet Documentation, Release 0.7.1

custom_metadata: dict
Key-value metadata to write Ignored if appending to an existing parquet data-set.

stats: True|False|list(str)|”auto”
Whether to calculate and write summary statistics. If True, do it for every column; If False,
never do; And if a list of str, do it only for those specified columns. “auto” (default) means
True for any int/float or timestamp column

Examples

>>> fastparquet.write('myfile.parquet', df)

fastparquet.update_file_custom_metadata(path: str, custom_metadata: dict, is_metadata_file: bool | None
= None)

Update metadata in file without rewriting data portion if a data file.

This function updates only the user key-values metadata, not the whole metadata of a parquet file. Update strategy
depends if key found in new custom metadata is also found in already existing custom metadata within thrift
object, as well as its value.

• If not found in existing, it is added.

• If found in existing, it is updated.

• If its value is None, it is not added, and if found in existing, it is removed from existing.

Parameters
path

[str] Local path to file.

custom_metadata
[dict] Key-value metadata to update in thrift object.

is_metadata_file
[bool, default None] Define if target file is a pure metadata file, or is a parquet data file. If
None, is set depending file name.

• if ending with ‘_metadata’, it assumes file is a metadata file.

• otherwise, it assumes it is a parquet data file.

Notes

This method does not work for remote files.

5.6 Backend File-systems

Fastparquet can use alternatives to the local disk for reading and writing parquet.

One example of such a backend file-system is s3fs, to connect to AWS’s S3 storage. In the following, the login creden-
tials are automatically inferred from the system (could be environment variables, or one of several possible configuration
files).

28 Chapter 5. Index

http://s3fs.readthedocs.io

fastparquet Documentation, Release 0.7.1

import s3fs
from fastparquet import ParquetFile
s3 = s3fs.S3FileSystem()
myopen = s3.open
pf = ParquetFile('/mybucket/data.parquet', open_with=myopen)
df = pf.to_pandas()

The function myopen provided to the constructor must be callable with f(path, mode) and produce an open file
context.

The resultant pf object is the same as would be generated locally, and only requires a relatively short read from the
remote store. If ‘/mybucket/data.parquet’ contains a sub-key called “_metadata”, it will be read in preference, and the
data-set is assumed to be multi-file.

Similarly, providing an open function and another to make any necessary directories (only necessary in multi-file mode),
we can write to the s3 file-system:

write('/mybucket/output_parq', data, file_scheme='hive',
row_group_offsets=[0, 500], open_with=myopen, mkdirs=noop)

(In the case of s3, no intermediate directories need to be created)

1. genindex 1. modindex 1. search

5.6. Backend File-systems 29

fastparquet Documentation, Release 0.7.1

30 Chapter 5. Index

INDEX

C
columns (fastparquet.ParquetFile property), 23
count() (fastparquet.ParquetFile method), 23

H
head() (fastparquet.ParquetFile method), 23

I
info (fastparquet.ParquetFile property), 23
iter_row_groups() (fastparquet.ParquetFile method),

23, 26

P
ParquetFile (class in fastparquet), 21

R
read_row_group_file() (fastparquet.ParquetFile

method), 23
remove_row_groups() (fastparquet.ParquetFile

method), 23

T
to_pandas() (fastparquet.ParquetFile method), 23, 25

U
update_file_custom_metadata() (in module fastpar-

quet), 28

W
write() (in module fastparquet), 26
write_row_groups() (fastparquet.ParquetFile

method), 24

31

	Introduction
	Highlights
	Caveats, Known Issues
	Relation to Other Projects
	Index
	Installation
	Requirements
	Installation
	Dev requirements

	Release Notes
	2023.2.0
	2023.1.0
	2022.12.0
	2022.11.0
	0.8.3
	0.8.2
	0.8.1
	0.8.0
	0.7.2
	0.7.1
	0.7.0
	0.6.0

	Quickstart
	Reading
	Writing

	Usage Notes
	Categoricals
	Byte Arrays
	Nulls
	Data Types
	Reading Nested Schema
	Object encoding
	Partitions and row-groups
	Iteration
	Dask/Pandas

	API
	Backend File-systems

	Index

